Advanced Rapid Transit or ART is the current name given to a rapid transit system manufactured by Bombardier Transportation. The original versions look like small subway cars that typically run in two-, four- or six-car trains, but the latest versions are more streamlined two-car articulated designs that are not easily uncoupled. ART systems run on conventional metal rails and pull power from a third rail, but are powered by a linear induction motor that provides traction by pulling on a "fourth rail" placed between the running rails.
The design was originally developed in the 1970s by the Urban Transportation Development Corporation (UTDC), a Crown corporation owned by the government of Ontario, Canada, as a system that would provide economic rapid transit service in the suburbs, which would have ridership levels between what a bus could serve at the low-end, or a subway at the high-end. During development the system was known as the ICTS, for ‘'Intermediate Capacity Transit System’'. Sales of the ICTS were made for metro lines in Vancouver, Toronto and Detroit.
Further sales were not forthcoming and the Ontario government lost interest in the company, selling it to Lavalin of Quebec in 1986. That company ran into serious financial difficulties and the UTDC returned to Ontario control, only to be immediately sold to Bombardier. Bombardier has been much more active in developing and promoting the ART system, introducing a major new version and winning several additional sales in New York, Beijing and Kuala Lumpur. A future system in Yongin, near Seoul, South Korea is to use the technology as well.
The largest ART system today is part of the Vancouver SkyTrain network, which has seen several major expansions over its lifetime, with several more being planned. It operates just under 50 km of ART track.
Contents |
During the 1950s, Toronto experienced the same sort of urban sprawl that was sweeping through the United States. Suburbs grew along existing highway corridors, stretching the city east and west, and then northward along the various provincial superhighways. These highways ended at the city limits, however, and there was little route capacity within the city itself. This caused enormous traffic problems within the city,[1] and a network of new highways to address the problem became part of the Official Plan in 1959.[2]
As construction of the network started, the mood of the citizens changed. By the mid-1960s, there was a growing awareness that the growth of the suburbs led to a flight of capital from the city cores, resulting in the urban decay being seen throughout the US. Additionally, several of the chosen routes ran through densely settled neighbourhoods, including some of the more upscale areas of Toronto, like Forest Hill and the University of Toronto. While the opposition was growing, Jane Jacobs moved to Toronto after having successfully rallied groups to cancel the construction of the Lower Manhattan Expressway in New York City. Applying the same formula in Toronto, Jacobs rallied local groups to oppose development of the Spadina Expressway project, while twice being arrested in the process.[3]
On 3 June 1971, Premier Bill Davis rose in the Provincial Legislature and stated that "Cities were built for people and not cars. If we are building a transportation system to serve the automobile, the Spadina Expressway would be a good place to start. But if we are building a transportation system to serve people, the Spadina Expressway is a good place to stop."[2] The expressway plan was dead; construction of the Spadina Expressway ended shortly after and none of the other planned expressways were ever built.
Instead of expressways, Davis and his new Minister of Transport, William Goodfellow, outlined the "GO-Urban" plan. GO-Urban called for a system of three advanced mass transit systems that would be run by the newly-formed GO Transit. The idea was to select a system with low capital costs, one that would be cost effective in low-density areas where a traditional subway would be too expensive to build and operate. Designed to have a design capacity half-way between busses and subways, the new system was referred to as the "Intermediate Capacity Transit System", or ICTS. The space age automated guideway transit (AGT) systems being designed in the late 1960s seemed like the right solution.[4]
Toronto was not the only city looking for such a solution, and there appeared to be a large market for AGT systems in the 1970s and 80s. As GO-Urban was larger than most networks being considered, practically every company working on an AGT, or hoping to, submitted a proposal. The first cut reduced the field to a still-large fourteen proposals. After a year-long selection process, GO selected the Krauss-Maffei Transurban maglev as the preferred solution. As a maglev, the system would be silent, addressing concerns about noise on elevated portions of the track. Additionally, the system's linear induction motor did not require physical contact for traction, which meant it would run with equal capacity in snow or icy conditions. Krauss-Maffei agreed to do all vehicle construction in Ontario, and allow the local office to handle all sales efforts in North America - a stipulation most US companies were not willing to agree to. Local testing, construction and sales were centralized in the newly-created "Ontario Transportation Development Corporation" (OTDC).[5]
Construction of a test track on the grounds of the Canadian National Exhibition started in late 1975, but shortly after this Krauss-Maffei announced that development funding provided by the German government was ending. Ontario was not willing to continue funding development of the system on their own, and cancelled the maglev plans.[5]
Instead of returning to their earlier submissions, the OTDC decided to press ahead with many portions of the existing ICTS design. On 14 April 1975, the Ministry of Transportation arranged financing for Phase I and II studies to develop the new version. In June 1975, OTDC announced that it had arranged a consortium to continue the development of the ICTS, changing their name to Urban Transportation Development Corporation to avoid any "provinciality" during their efforts to market the design to other cities.[6]
The result was essentially a larger, rubber-wheeled version of the original maglev vehicle.[7] The consortium included of SPAR Aerospace for the linear induction motor, Standard Elektrik Lorenz (SEL) for the automatic control system, Dofasco for the bogies, Alcan and Canadair for the design of the car bodies and a set of prototypes, and Canadair as the overall prime contractor.[8] The arrangements, funding and final system definitions were in place by 1976.[9]
Between 1976 and 1980, three prototype cars were built. The first immediately demonstrated a problem with the rubber-wheeled bogies. The linear induction motor required very accurate positioning about 15 mm above its "reaction rail" in order to work efficiently and the slight give in the wheels was enough to make this a problem.[6] The obvious solution to this would be to use steel wheels instead, but that would re-introduce the noise problem as the trains rounded curves in the tracks. A new solution was selected, using steel wheels with an articulated bogie that would steer each wheel into the direction of the track and thereby avoid the rubbing between the flange and track that caused the screeching noise. UTDC bought two modern articulated bogie patents from a private developer in the United States, which were further developed by Dofasco.[10]
A dedicated test facility was desired; modelled after the similar Transit Testing Center set up in the US as part of their own mass transit developments, the site would be open to use for any company that wanted to test new technologies without the need to build out their own testing sites. A 480-acre (1.9 km2) site in Millhaven, outside of Kingston, Ontario, was selected for the new test centre. Kingston had been home to the Canadian Locomotive Company that closed its doors in 1969, and the city lobbied hard for the new company to locate to their city.
The site was officially opened on 29 September 1978 by James Snow, the Minister of Transportation and Communications. The site included a 1.9 km oval test track that included at-grade, elevated and ramped sections, switches, and the automatic control center.[11] Phase III of the ICTS program ended on 31 January 1980 when testing on the prototype was completed at the Millhaven site, by this point the government had invested about $57.2 million, of a total $63 million spent on the product by the government and its industrial partners.[12]
By the late 1970s, it appeared there were no more technology issues to overcome and efforts turned to debugging the system and developing methods for mass production. As this process started, UTDC started its own efforts to market the design. Toronto, the inspiration for the system, was an obvious target, but the company also found interest in the system in Ottawa, Hamilton, Vancouver, Detroit and Los Angeles.
A test system in Toronto was the primary concern. With the GO-Urban concept having since been cancelled, and GO Transit having turned to conventional heavy rail systems, the only suitable local market was the Toronto Transit Commission (TTC). The TTC had recently extended the east-west Bloor-Danforth subway line with the addition of another station on each end of the line, and had planned to further extend the line with streetcars running from those stations into the suburbs. Construction had already started on the streetcar system at the eastern end of the line at Kennedy station when the provincial government asked them to switch to the ICTS. The TTC was uninterested until the government threatened to pull their financing, which accounted for 75% of the capital budget. In exchange, the government agreed to pay for any cost overruns above the original streetcar budget. Construction of the internal streetcar platform and a turn-around loop had already been completed at the station. The platform had to be raised to the higher floor height of the ICTS, but UTDC claimed the vehicle would be able to make its way around the 18 m radius loop at 10 km/h without additional modification.
Vancouver proved very interested in the system on its own merits. As early as 1978 the city had been planning a transportation-themed show for its centennial in 1986, and in 1980 they won the rights to become the worldwide Expo '86, giving it the theme "Transportation and Communication". The city is newer than Toronto and more spread out, making a traditional subway unattractive - precisely the problem that the ICTS had been designed to solve. The ICTS vehicle design with shorter height was also ideal, as the old heavy-rail Dunsmuir Tunnel in downtown Vancouver could be easily modified and split into two stacked tunnels. With UTDC interested in showcasing the system at the Expo, and the Expo backers interested in a transit solution that could be open in time for the show, a deal was quickly arranged that was attractive to both parties. At the time it was a somewhat controversial project, and had its detractors.[13]
Detroit had been one of six cities selected for rapid development under the UMTA program, when, after ten years, little actual development had taken place and the UMTA was mandated to install systems with all possible speed. None of the high-tech developments funded by the UMTA had been installed, nor developed to the point where they were ready for service. Instead, the Detroit system was favouring the Cabinentaxi system from Germany, but that company decided to pull out of the contest in order to focus on a larger development in Hamburg. The UTDC responded to a "buy American" clause in the UMTA by opening a branch office in Detroit, and that immediately swung the decision in their favour. However, with the Ronald Reagan administration taking office in 1981, UMTA was rapidly de-funded. Four of the five cities ended their development plans, but Detroit and Miami (using a different design) decided to press ahead with their deployments.
Construction of the Toronto and Vancouver systems proceeded apace, with the Scarborough RT opening for service on 22 March 1985,[14] followed by the SkyTrain on 11 December 1985, with passenger service starting in January.[15]
Sales of additional ICTS systems went nowhere, and the government began to worry about UTDC's continued successes. The government pushed any potential deployment to buy from UTDC, but with only one product, and that product having many problems in Toronto, there was little interest from other cities. At the same time, the buy-UTDC clause locked Hawker Siddeley Canada out of many local projects, and they had formerly been a major supplier in the local market. The solution was to form a 50-50 combined company, Can-Car Rail, who marketed the combined product line. Hawker had a number of successful products, notably their Bombardier BiLevel Coach, and as these other products were selling well through this period, interest in actively selling ITCS waned.
In spite of Can-Car's success in other markets, as early as 1981 the government had considered selling UTDC to the private sector. Their concern was that without a manufacturing business, UTDC would find it difficult to make enough income to justify its Kingston operations. If the company did start a manufacturing side, it would be inappropriate for the company to remain government owned.[16] The Can-Car deal put this on hold for a time.
In 1986 the new Ontario government announced their intention to sell UTDC to Lavalin, a large engineering company in Montreal. Lavalin purchased the company for only CAD$50 million, less than the $70 million spent on the UTDC by the government up to 1981.[16] The sale was highly controversial at the time, due to several non-performance payments due to the early problems on the ICTS that had to be paid out by the government, to the tune of $39 million. Soon after, Hawker Siddeley announced that they were selling their remaining interest in Can-Car to Lavalin as well.
A series of financial difficulties caused by Lavalin's rapid expansion lead to its bankruptcy. A clause in the original sales contract returned UTDC to Ontario crown control, and they quickly sold it to Bombardier in 1991.[17] Bombardier started a redesign effort for the ICTS, resulting in the ART. Compared to the original, ART's cars are longer with more seating, and have a more open layout inside.
ART won the contest for the AirTrain JFK project, which is widely considered a great success in spite of predictions to the contrary. After winning SkyTrain in Vancouver, Bombardier further improved the design by introducing an articulating section between adjacent cars, replacing the coupling and doors of the older (retroactively named) Mark I design. The articulation allows passengers to move freely between the cars, as well as adding more internal space for passenger seating. These versions of the Mark II design have won several new contests, and are currently operating on the Kelana Jaya Line in Kuala Lumpur, the Airport Express in Beijing (in four-car trains), and is under construction on the EverLine Rapid Transit System outside of Seoul.
Vancouver continues to be the largest operator of the ICTS system, with 49.5 km of operational lines in its SkyTrain network. This network will increase in 2016 with a 10.9 km extension, the Evergreen Line. The SkyTrain system uses a mix of Mark I and Mark II cars, with plans for further expansion with Mark III cars.
ICTS/ART systems are normally fully automated and driven under computer control from a centralized office. However, the TTC system in Toronto rejected this system, and the ICTS cars were modified at high cost to include operator cabins and conventional controls. No other ART service uses manual control.
ART is based on a linear induction motor (LIM) using vehicle-mounted windings and a track-mounted stator consisting of a thin aluminum plate mounted flat between the tracks. The small size and flat shape of the motor, and its lack of a transmission connected to the bogies, allows the ART to be much closer to the ground than a traditional subway car. The motor is used for all control with the exception of emergency braking using conventional shoes in the bogies.
The ICTS vehicle was built using a lightweight aluminium frame riding on two sets of articulated trucks using small steel wheels. The original Mark I cars are 12.7 m (41.7 ft) long. The second generation Mark II cars are 16.7 m (54.8 ft) long each and come in articulated pairs.
As of 2011, the Mark II design has been updated by Bombardier, with its newest offering being the Mark III. No production models are yet in service in the world, but dimensions are expected to be similar to the Mark II, with possible capacity improvements offered over the outgoing model through redesigned car layout.
Vancouver's TransLink has released conceptual renderings of what future Mark III cars might look like in the SkyTrain network. The vehicles appear sleeker, with larger windows on the sides of the train, and redesigned windows and headlights on the ends of the cars.
While its linear motors and steerable axles are relatively rare, the ART has a number of competitors in the field of automated metros, including the VAL (first used in Lille, France) and the Meteor technology (used by Line 14 of the Paris Métro). All current ART lines are predominantly elevated, but being on a separated guideway they perform equally well underground, as they in fact do for a portion of both Vancouver's Expo and Millennium Lines and Kuala Lumpur's Kelana Jaya Line.
ART and similar technologies are sometimes referred to as "light rail", especially in Asia. Because of their use of automated operation and third-rail power, however, they are unsuitable for the unprotected street-level tramways that the term usually indicates in Europe and North America.
The SkyTrain network has the largest ART system in operation, and currently has two ART lines: the Expo Line and the Millennium Line. SkyTrain includes the Canada Line, which is also a grade-separated, fully automated light metro system, though it uses conventional electric motors in vehicles instead of the ART design. Vancouver’s SkyTrain network continues to maintain high on-time reliability, consistently over 95%. The Expo Line opened in late 1985, in ample time for Expo '86. With the opening of the Millennium Line in 2002, Vancouver added to its original Mark I fleet the longer, articulated ART Mark II trains first used in Kuala Lumpur, which allow for significantly greater rider capacities.
Vancouver is set to begin construction of a 10.9 km ART track expansion in 2012, known as the Evergreen Line, which will extend the SkyTrain network from Burnaby to Coquitlam in the north-east. Although at one point the Evergreen Line was proposed to be a street-level LRT system that would not use ART technology, in 2008 plans were changed back to ART by the provincial government to facilitate higher ridership from increased capacity, shortened travel times and to integrate seamlessly with the existing SkyTrain network.
Plans may see the Expo Line being extended further into Surrey, as well as a westward extension of SkyTrain from VCC-Clark Station along the Broadway corridor to UBC, pending the outcome of local public consultations.
In 1981, the Toronto Transit Commission was planning to build a streetcar line serving the city’s eastern district of Scarborough, but the Ontario provincial government convinced it, by threatening to withhold funding, to switch to the ICTS.[18] This would act as a demonstration system for other transit operators considering buying the trains. In exchange, the government agreed to pay for any cost overruns over the original LRT costs. The 7 km six-station Scarborough RT line opened in March 1985.[18]
Although its ICTS Mark I trains are capable of driving themselves, the TTC chose to run them semi-automatically with operators on board in order to keep peace with their main union. This conversion proved much more difficult than imagined; the small confines of the ICTS car meant that the traditional Toronto solution of taking up the front-right corner of the cab left too little room for the operator to work in, and their entire front of the car had to be used up, reducing seating. Additionally, the ICTS control system was based on "dumb" cars and "smart" control centres, so there was no system on the train itself for control or presenting information. These systems had to be retrofitted and were the cause of considerable expense and confusion.
Entering operation, the problems continued. The braking system had been designed to be fully automated, but was now being operated by manual control, and the brakes were being over-applied. This led to problems with the wheels being rubbed flat in spots when the brakes were applied too strongly, producing buzzing noises when running at speed. Since the vehicles were brand-new, the TTC did not have a machine capable of grinding the small-diameter wheels, and one had to be purchased for $1.5 million.[18] Another $250,000 was needed for a rail grinder to remove "totally unexpected rail corrugations". Additionally, the cars were found to be incapable of turning the short radius 18 m turning loop at one end of the line, in spite of UTDC's claims it could, which was going to have to be re-built at a cost of about $6 million. Instead, this portion of the track was simply abandoned.
Over a million was originally budgeted to heat the third rail to prevent ice buildup, but later removed as a cost-cutting move. It was believed that the rapid operation (short headways) would keep the rail free of snow as the passing cars heated the rail. This proved not to work, and in operations at just the wrong conditions close to freezing the opposite occurred; when the train passed and heated the rail, microscopically thin layers of snow would be melted, and if the rail was below zero as a whole, the water would freeze to the rail and cause ice buildup. Another retrofit was required to solve this problem, by adding wooden covers over the rail, a system used throughout Toronto's subway system. Even with these covers in place, the line can be shut down with any heavy snowfall that covers the fourth rail to a depth that fills the distance between the rail and the linear motor.
Only two of the SRT's stations have ridership comparable to those of the TTC’s conventional subway lines, and most passengers see it merely as an extra transfer they must make in order to get onto a subway line running downtown. Its Mark I fleet will soon be due or replacement, and it would be expensive to either resume production of the old models, or upgrade the line to handle the longer Mark II trains.[19]
Although there have been many proposals to extend the SRT line, none of these gained traction until recently. The line is currently planned to be converted to use conventional light rail vehicles and be extended west by 19km.[20]
The thirteen-station Detroit People Mover is a fully automated system, using the same ICTS Mark I trains as Toronto and Vancouver. The system had originally been part of the UMTA's buildout, which included lines radiating outward from a central circle into the suburbs. However, the UMTA was dramatically "downfunded" in the early 1980s, and the Detroit system lost the majority of the funding. Although most other cities on the UMTA list simply gave up on their plans, Detroit decided to press ahead with the portion they could build with the funds they already had, and completed the downtown loop.
The resulting system offers service to a limited area of the downtown core along a 4.7 km loop. The point-to-point distances are easily walkable, so the system sees low ridership levels on the order to 7,500 passengers a day. Originally designed to act as the hub of a system with 15 million riders a year, the 2 million riders it currently serves results in a very high cost-per-passenger. According to The Detroit News, this was about $3 per ride, against a fee of only 50 cents.
AirTrain JFK, opened in December 2003, is an automated ART service with Mark II rolling stock. Its two branches connect the New York City Subway and Long Island Rail Road to the John F. Kennedy International Airport in New York. This service uses non-articulated Mark II cars in trains of one or two cars.
The Kelana Jaya Line in Kuala Lumpur, Malaysia (formerly Putra-LRT) is fully automated, and opened in 1998. There are plans for extension of the line. It introduced the longer, articulated Mark II version of the ART train. The alignment starts from the Depot in Subang and ends at Terminal Putra in Gombak totaling to 29 km in length with a total of 24 stations.
Its first operation commenced on 1 September 1998 between the Lembah Subang Depot to Pasar Seni Station and section two, between Pasar Seni to Terminal Putra in June 1999. In 2002, the system carried its 150 millionth passenger, with an average of 160,000 passengers riding the system daily. Today, it carries over 170,000 passengers a day and over 350,000 a day during national events.
In 2006, an order was placed with Bombardier for 22 new 4-car units, with an optional 13 to be ordered if necessary. Delivery is expected in 2008. In 2007, the 2006 order was extended with additional purchase of 52 train sets (13 trains of 4-cars). Delivery is expected to be in 2010.
The Airport Line of the Beijing Subway, opened in July 2008, uses ART technology, with a fleet of 40 locally manufactured Mk II vehicles.[21] The route is 28 km long and has four stations.
The EverLine Rapid Transit System is an ART line, currently being built in Yongin. The line will connect the city to the Everland theme park, with an extension of the Seoul Subway now under construction. [2]
Two demonstrator/prototype cars were built and used to test the ICTS technology at the UTDC facility at Millhaven, Ontario. The cars lacked doors at either end of the vehicle. The lead car had windows in the centre and driver side, while the trailer car only had a centre window. The paint scheme on the lead car was orange and white, while the trailer was grey and orange.
On the inside there were no seats and the overall interior was unfinished. Only the trailer car remained on the facility as of 2000 and the fate of this car set is unknown. A mock-up of an ICTS car was stored at the Toronto Transit Commission Wychwood Carhouse by Disney Displays.
The ALRT car was a proposed rapid-transit vehicle for Greater Toronto's GO ALRT in the early 1980s. The car was longer, used a pantograph and was an articulated version of the Scarborough RT car. The ALRT car was capable of high speeds needed for interurban operation. As the required capacity of the ALRT system rose, it eventually approached the size of conventional heavy rail, and ALRT was cancelled in favour of additional diesel units pulling Bombardier BiLevel Coaches, which have since gone on to be one of Bombardier's best-selling products.
The original ALRT design was never produced, as the ALRT program was cancelled in 1985.
System | Country | Km | Type | ||||
---|---|---|---|---|---|---|---|
Mark I | Mark II | Mark III | Mark III on Order | ||||
Airport Express | Beijing, China | 27 km | 40 | ||||
AirTrain JFK | New York, USA | 13 km | 32 | ||||
Detroit People Mover | Detroit, Michigan, USA | 4.7 km | 12 | ||||
EverLine | Yongin, South Korea | 18.5 km | 32 | ||||
Kelana Jaya Line | Kuala Lumpur Malaysia | 29 km | 210 | ||||
UTDC Test Facility | Millhaven, Ontario, Canada | - | 2 | ||||
Scarborough RT | Toronto, Ontario, Canada | 6.4 km | 28 | ||||
SkyTrain - Evergreen, Expo, and Millennium Lines | Vancouver, British Columbia, Canada | 49.5 km | 150 | 108 | (28)** | ||
Sub-totals | 192 | 422 | |||||
Totals: | 614 |
A scene in the 2003 movie Paycheck shows Ben Affleck running in front of a mockup of a Mark II train, not actually filmed in the Vancouver SkyTrain system. It can also be seen numerous times in Smallville, and in other shows filmed in Vancouver.